
Inference of Genetic Regulatory Networks with
Unknown Covariance Structure

Belhassen Bayar and Nidhal Bouaynaya
Department of Electrical and Computer Engineering

Rowan University
Glassboro, NJ

Roman Shterenberg
Department of Mathematics

University of Alabama at Birmingham
Birmingham, AL

Abstract—The major challenge in reverse-engineering genetic
regulatory networks is the small number of (time) measurements
or experiments compared to the number of genes, which makes
the system under-determined and hence unidentifiable. The only
way to overcome the identifiability problem is to incorporate
prior knowledge about the system. It is often assumed that
genetic networks are sparse. In addition, if the measurements,
in each experiment, present an unknown correlation structure,
then the estimation problem becomes even more challenging.
Estimating the covariance structure will improve the estimation
of the network connectivity but will also make the estimation of
the already under-determined problem even more challenging.
In this paper, we formulate reverse-engineering genetic networks
as a multiple linear regression problem. We show that, if the
number of experiments is smaller than the number of genes and
if the measurements present an unknown covariance structure,
then the likelihood function diverges, making the maximum
likelihood estimator senseless. We subsequently propose anor-
malized likelihood function that guarantees convergence while
keeping the form of the Gaussian distribution. The optimal
connectivity matrix is approximated as the solution of a convex
optimization problem. Our simulation results show that the
proposed maximum normalized-likelihood estimator outperforms
the classical regularized maximum likelihood estimator, which
assumes a known covariance structure.

Index Terms—Gene regulatory networks; Maximum likelihood
estimation; Under-determined systems.

I. I NTRODUCTION

Inferring gene regulatory networks from high-throughput
data is an important subject in computational systems biol-
ogy because it renders possible the study of gene-to-gene
interactions, the identification of functional modules andthe
prediction of the behavior of the system under different
conditions such as perturbations. A wealth of approaches
were suggested to infer genetic regulatory networks including
Boolean networks, Bayesian networks, graphical-based model
approaches, information-theoretic-based methods and differ-
ential equations modeling. Among these approaches, only the
class of differential equations presents a continuous model
that is able to quantify the direction, strength and sign of
the interactions. Identifying whether a genetic interaction is
stimulatory or inhibitory is of great importance for under-
standing the dynamics of the genetic networks and designing
appropriate biological experiments for hypothesis validation.

The main difficulty in the problem of inference of genetic
regulatory networks, using differential equations (or other

methods), is the large number of genesp compared to the
number of experimentsn. This largep, smalln issue makes the
problem unidentifiable, i.e., there are many network structures
that fit the given data, and no unique solution exists. The
only known way to overcome an under-determined problem
is to introduce prior knowledge about the system. In genetic
networks, it is often assumed that the network is sparse [1].
This assumption is biologically relevant (at least for large
networks). It is acknowledged that a gene usually interacts
with only a small number of genes in the network.

Since genetic expression data is very noisy (due to mea-
surement uncertainties and inherent stochasticity of biological
signals), stochastic ODEs are better suited to model genetic
networks, where an error term is added to the deterministic
ODE model [1], [2]. We model the dynamics of genetic
networks using a system of linear differential equations near
a steady-state [1],

Y = AX + E, (1)

where Y = [y1, · · · , yn], X = [x1, · · · , xn] and E =
[ǫ1, · · · , ǫn] arep × n matrices (p > n), where every column
of Y , X , and E represents a single experiment and there
are n columns representingn experiments.A ∈ Rp×p is
the connectivity matrix of the network. Positive and negative
values of A are interpreted as stimulatory and inhibitory
interactions, respectively. The columnxk ∈ Rp, k = 1, · · · , n
contains the expressions of thep genes in thekth experiment.
Y = Ẋ − U , where U may be some known control or
basal production rate. Model (1) states that the production
rate of moleculei is a linear combination of the expressions
of all other molecules in the network plus some known basal
production rate plus an error term [1].

In order to take into account the noise statistics, a maximum
likelihood (ML) approach can be adopted [1], [2]. In [2], the
noise is assumed to be uncorrelated. Though Rasoolet al.
[1] proposed a method to estimate the matrix connectivity
of the network while accounting for possible correlations in
the measurements, their approach, as the authors state, applies
only to over-determined systems and cannot be used for under-
determined system.
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Problem Formulation: Why the maximum likelihood method
with covariance estimation is senseless for under-determined
systems

Assume thatǫ1, · · · , ǫM are i.i.dN (0, Σ). Then, the nega-
tive log-likelihood function of(A, Σ) can be expressed up to
a constant as [1]

−l(A, Σ) = Tr[
1

M
(Y − AX)(Y − AX)T Σ−1] + ln |Σ|, (2)

where Tr denotes the trace function and|Σ| is the determinant
of the matrixΣ. Because the system is under-determined, there
exist solutions satisfyingY = AX and Σ infinitely small.
For these solutions, the negative log-likelihood in (2) tends to
−∞. Hence, the likelihood, as a function of the two variables
(A, Σ), diverges. Observe that the likelihood converges if the
covariance matrixΣ is known (e.g., proportional to the Identity
for uncorrelated measurements as in [2]) or if the system is
over-determined (in this case, there exists no solution that
satisfiesY = AX).

Assuming uncorrelated observations amounts to separately
estimating the regression coefficients (A) by performingn
separate regressions. This is inferior than jointly estimating
all coefficients when taking into account the correlation inthe
observations or measurements. Rothmanet al. [3] proposed
a regularized algorithm that simulatenously infers the regres-
sion coefficient matrixA and the inverse error covariance,
Ω = Σ−1, by imposing sparsity constraints onΩ. The l1-
norm penalty onΩ ensures the convergence of the regularized
likelihood because it excludes exact solutions, for which
the covariance is infinitely small or equivalently the inverse
covariance is infinitely large. However, in many applications,
the assumption of a sparse inverse covariance matrix may not
be reasonable or have any physical justification. In particular,
in the genetic regulatory network problem, there is no evi-
dence for such an assumption. Moreover, the solution to the
regularized problem in [3] relies on an iterative procedurethat
finds the maximum overA then overΩ. That is because the
problem is convex in each variable,A andΩ, but not convex
in the pair(A, Ω). This iterative procedure is not guaranteed
to converge and if it does converge, then it may not reach the
optimal solution. Hence, the open question remains: “How can
we perform maximum likelihood with covariance estimation
for under-determined systems?”

This paper addresses this question, namely the problem of
ML estimation with unknown covariance in under-determined
systems. We present a normalization of the likelihood function
that guarantees convergence while still keeping the form ofthe
Gaussian distribution.

The proofs of the mathematical claims will be presented in
the extended journal version.

II. T HE NORMALIZED L IKELIHOOD

We define the normalized-likelihood of the under-
determined (n < p) multiple regression model in (1), under
the Gaussian assumption, as

Definition 1.

LN (A, Ω) =
|(Y − AX)T Ω(Y − AX)|

n

2

(2π)
np

2

exp−
1

2
Tr[(Y

−AX)T Ω(Y − AX)], (3)

where| · | is the matrix determinant operator.

Obviously, one can propose many possible normalizations
of the Gaussian likelihood as a function of the pair(A, Ω).
Our particular “choice” in Definition 1 is motivated by finding
a function that guarantees the convergence of the likelihood
while keeping the form of the Gaussian density. The pair
(A, Ω) can then be computed to maximize the normalized-
likelihood, LN , i.e.,

(A∗, Ω∗) = argmax
A,Ω

LN(A, Ω), (4)

It can be shown that the solution to (4) is given by

(Y − A∗X)T Ω∗(Y − A∗X) = nI, (5)

whereI denotes then × n Identity matrix.
There are (infinitely) many pairs (A, Ω) that satisfy the

optimality condition in (4). In order to obtain a unique
solution, we need to further constrain the problem. Among
all possible solutions of (5), we find those that minimize the
regularized least-square error‖Y −AX‖2

F +λ‖Ω‖2
F , whereλ

is a regularization parameter and‖ · ‖F denotes the Frobenius
norm. Thus, the optimization problem becomes











min
(A,Ω)

‖Y − AX‖2
F + λ‖Ω‖2

F

s.t. (Y − AX)T Ω(Y − AX) = nI.

(6)

To solve (6), we use the polar decomposition of matrices.

Definition 2. The polar decomposition of a matrixB ∈ Cp×n

is given by
B = U |B|, (7)

where |B| = (BT B)1/2, (·)1/2 is the principal square root
operator andU : Cp −→ Range(B) is a Cp×n isometry such
that UT U = I.

Replacing the matrix(Y −AX) by its polar decomposition
in (5), we obtain an analytical expression ofΩ in terms of A,

ΩA = n U [(Y − AX)T (Y − AX)]−1UT , (8)

where U is the isometry of(Y − AX). The optimization
problem in (6) becomes then equivalent to







min
S

Tr(S) + n2 Tr(S−2)

s.t. S = (Y − AX)T (Y − AX)

(9)

The objective function in (9) is convex and depends only
on one variableS. However, the problem is still not convex
because the equality in the constraint is quadratic [4]. The
regression coefficient matrixA is sparse, therefore itsl1
norm is upper bounded [5]. We use the sparsity ofA and
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Fig. 1. Performance comparison of the proposed maximum normalized-likelihood (MNL) algorithm with the regularized MLestimation for different network
sizes%95 sparse: Red: MNLE with unknown covarianceΣ; Green: MLE forΣ = I; Blue: MLE for Σ = σ2I; Black: MLE for Σ = ρ|i−j|. (a) p = 10;
(b) p = 20; (c) p = 30; (d) p = 40.

approximate the problem in (9) by a convex optimization
problem. If ‖A‖1 ≤ ǫ, then the solution to the optimization
problem in (9) can be approximated by the solution to the
following convex optimization problem







min
S

Tr(S) + n2 Tr(S−2)

s.t. S ∈ Λ = {S ∈ Sn,n | ‖S − Y T Y ‖ ≤ ǫc}

(10)

where Sn,n is the set ofn × n symmetric positive definite
matrices andc is a small term which depends onX andY . Let
S∗ be the unique global solution of the convex optimization
problem in (10). The optimal connectivity matrix,A∗, satisfies,
S∗ = (Y − A∗X)T (Y − A∗X). Since there are still many
possible solutions to the optimal connectivity matrix, we
propose to find the one with minimuml1 norm,











min
A

‖A‖1

s.t. AX = Y − U(S∗)1/2,

(11)

where the equality constraint in Eq. (11) comes from the
polar decomposition of(Y −AX). SinceA is sparse, we can
approximate the solution constructed withU , the isometry of
(Y −AX), by a solution constructed byV , the isometry ofY .
This approximation reduces the set over which we minimize
but leads to an affine equality constraint and hence a convex
problem. Thus, to findÂ we solve











min
A

‖A‖1

s.t. AX = Y − V (S∗)1/2,

(12)

MNLE algorithm: The MNLE algorithm is summarized
below.

Input: The matricesX ∈ Rp×n and Y ∈ Rp×n

(p > n) satisfying the under-determined regression model
Y = AX + E with an unknown covariance matrix.

Step 1 Solve the convex optimization problem in (10)
(using for instance the yalmip package in MATLAB
[6]). The solution is a s.p.d. matrixS∗ ∈ Rn×n

Step 2 Given S∗, the optimal connectivity matrixA∗ is
obtained as the solution to the convex optimization
problem in (12) (using for instance, thecvx package
[7]).

III. S IMULATION RESULTS

We compare the proposed MNLE algorithm to the regular-
ized MLE algorithm in [1], where the lasso penalty is imposed
on the connectivity matrixA. To this aim, we generate
synthetic genomic networks with varying sizep, number of
measurementsn and correlated structureΣ. We use the same
covariance matrix in [1] whereΣi,j = ρ|i−j| and ρ = 0.9
is a fixed correlation structure. We use two sparse models of
the connectivity matrix,‖A‖0 = 0.05p2 and ‖A‖0 = 0.2p2,
where‖·‖0 is the number of non-zero elements. The entries of
the matrixA are drawn from a standard normal distribution
with zero-mean and unit variance, i.e.,ai,j ∈ N (0, 1). The
performance of the algorithm is assessed through the following
measure suggested in [8]

E =
n

∑

i=1

n
∑

i=j

ei,j with ei,j =

{

1, if |aij − âij | > δ
0, otherwise,

(13)

where aij and âij denote, respectively, the true and es-
timated connectivity entries.δ is a fixed threshold set to
δ = 1

2 min
i,j

|ai,j | 6= 0. The percentage error is equal toE/n2.

Figure 1 shows the percentage error versus the number of
measurementsn for p = 10, 20, 30, 40-gene networks and
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Fig. 2. Performance comparison of the MNLE with the regularized ML estimation for different network sizes%80 sparse: Red: MNLE forΣ unknown;
Green: MLE forΣ = I; Blue: MLE for Σ = σ2I; Black: MLE for Σ = ρ|i−j|. (a) p = 10; (b) p = 20; (c) p = 30; (d) p = 40.

‖A‖0 = 0.05p2. The proposed MNLE algorithm (in red)
outperforms the regularized maximum likelihood estimator
(ML) with known covariance matrix, whereΣ = I, σ2I, ρ|i−j|

[1]. 100 Monte Carlo simulations were performed for each
curve. Observe that the percentage error of the MNLE is
always less than%6 and stabilizes under1%. Figure 2 shows
the same simulations but with a degree of sparsity80% for
the connectivity matrixA. The performance may seem to
deteriorate for denser matrices; this may be due to two reasons:
First, the MNLE algorithm is built to find the sparsest matrices.
Second, the number of errors increases with the number
of non-zero elements in the matrix. The proposed MNLE
algorithm still outperforms the regularized ML estimator with
known covariance matrix.

IV. CONCLUSION

The maximum likelihood estimator of under-determined
Gaussian systems with unknown covariance is senseless.
Nonetheless, in many applications, the observations or mea-
surements present an unknown correlation structure and the
system is under-determined because of the difficulty or cost
of measurements. This is for instance the case in genetic
regulatory networks, where the number of genes is much
larger than the number of time point measurements, and where
gene expression measurements (at each time point) present an
unknown correlation structure. For such applications, themax-
imum likelihood estimator with unknown covariance diverges.

In this paper, we proposed a new maximum normalized-
likelihood estimator (MNLE), that guarantees the convergence
of the likelihood and keeps its Gaussian form. We show that
the optimal estimator can be approximated as the solution of
a convex optimization problem. Our simulation results show

that the proposed MNLE algorithm outperforms the regular-
ized maximum likelihood estimator with known covariance
structure.
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