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Abstract—The major challenge in reverse-engineering genetic methods), is the large number of genesompared to the
regulatory networks is the small number of (time) measuremets number of experiments. This largep, smalln issue makes the
or experiments compared to the number of genes, which makes problem unidentifiable, i.e., there are many network stmezt
the system under-determined and hence unidentifiable. Thendy : . T . . .
way to overcome the identifiability problem is to incorporate that fit the given data, and no unique solutlor_l exists. The
prior knowledge about the system. It is often assumed that ONly known way to overcome an under-determined problem
genetic networks are sparse. In addition, if the measuremes, is to introduce prior knowledge about the system. In genetic
in each experiment, present an unknown correlation structee, networks, it is often assumed that the network is sparse [1].
then the estimation problem becomes even more challenglng.-rhiS assumption is biologically relevant (at least for karg

Estimating the covariance structure will improve the estination tworks). It i K ledaed that v int ¢
of the network connectivity but will also make the estimatio of networks). It is acknowledge at a gene usually Interacts

the already under-determined problem even more challengig. With only a small number of genes in the network.
In this paper, we formulate reverse-engineering genetic rievorks Since genetic expression data is very noisy (due to mea-

as a multiple linear regression problem. We show that, if the - . e .
number of experiments is smaller than the number of genes and surement uncertainties and inherent stochasticity obigiohl

if the measurements present an unknown covariance structe, Signals), stochastic ODEs are better suited to model geneti
then the likelihood function diverges, making the maximum networks, where an error term is added to the deterministic
likelihood estimator senseless. We subsequently proposer@r- ODE model [1], [2]. We model the dynamics of genetic

malized likelihood function that guarantees convergence hile  natyorks using a system of linear differential equationarne
keeping the form of the Gaussian distribution. The optimal
a steady-state [1],

connectivity matrix is approximated as the solution of a comex
optimization problem. Our simulation results show that the
proposed maximum normalized-likelihood estimator outpeforms Y = AX+ E 1)
the classical regularized maximum likelihood estimator, vhich ’
assumes a known covariance structure.

Index Terms—Gene regulatory networks; Maximum likelihood

estimation; Under-determined systems. where Y = [y;,---,¥,,, X = [X1,---,X,] and E =
[€1,- -, €,] @arep x n matrices p > n), where every column
|. INTRODUCTION of Y, X, and E represents a single experiment and there

Inferring gene regulatory networks from high-throughp@'® 7 columns representing experiments.A ¢ RP*? is

data is an important subject in computational systems bidfle connectivity matrix of the network. Positive and negati

ogy because it renders possible the study of gene-to-gé’ﬁ‘é“es of A are interpreted as stimulatory and inhibitory

interactions, the identification of functional modules ahe Nteractions, respectively. The colump € R?, k=1,---,n
prediction of the behavior of the system under differeffontains the expressions of thegenes in the:'" experiment.
conditions such as perturbations. A wealth of approachs = X — U, where U may be some known control or
were suggested to infer genetic regulatory networks iriotyd basal production .rate._ Model (1)_sta_tes that the prodgctlon
Boolean networks, Bayesian networks, graphical-basedetno&"‘te of molecule is a Illnear combination of the expressions
approaches, information-theoretic-based methods arfer-dif of all ot_her molecules in the network plus some known basal
ential equations modeling. Among these approaches, ogly fifoduction rate plus an error term [1].
class of differential equations presents a continuous modeln order to take into account the noise statistics, a maximum
that is able to quantify the direction, strength and sign dikelihood (ML) approach can be adopted [1], [2]. In [2], the
the interactions. ldentifying whether a genetic intei@attis noise is assumed to be uncorrelated. Though Rasball.
stimulatory or inhibitory is of great importance for underfl] proposed a method to estimate the matrix connectivity
standing the dynamics of the genetic networks and designiofythe network while accounting for possible correlations i
appropriate biological experiments for hypothesis vdiata the measurements, their approach, as the authors statesapp
The main difficulty in the problem of inference of genetionly to over-determined systems and cannot be used for under
regulatory networks, using differential equations (or esth determined system.



Problem Formulation: Why the maximum likelihood methoDefinition 1.

with covariance estimation is senseless for under-detesthi T 2
Y - AX)" QY — AX)|z 1
systems Ln(AQ) = I zzw)(%p ) exp —3 Tr[(Y
Assume thakq, - - -, ep are i.i.dN(0,X). Then, the nega- “AX)TQY — AX)] 3)
tive log-likelihood function of(A, X)) can be expressed up to ’
a constant as [1] where| - | is the matrix determinant operator.

Obviously, one can propose many possible normalizations
of the Gaussian likelihood as a function of the péit, Q2).

where Tr denotes the trace function it is the determinant OUr particular “choice” in Definition 1 is motivated by fingjn

of the matrix3. Because the system is under-determined, thefefunction that guarantees the convergence of the liketihoo

exist solutions satisfying” = AX and ¥ infinitely small. While keeping the form of the Gaussian density. The pair

For these solutions, the negative log-likelihood in (2)deio  (4:€2) can then be computed to maximize the normalized-

—oc0. Hence, the likelihood, as a function of the two variabldéelihood, L, i.e.,

(A, E)_, diverges_. O_bserve that the Iikelih(_)od converges if_ the (A*,Q*) = argmax Ly (A, Q), 4)

covariance matrix. is known (e.g., proportional to the Identity A,Q

for uncorrelt?\ted measgrements as in [2].) or if the sy_stem IiScan be shown that the solution to (4) is given by

over-determined (in this case, there exists no solutiont tha

satisfiesy = AX). Y - A*X)TQ"(Y — A*X) = nl, (5)
Assuming uncorrelated observations amounts to Separatve\/WereI denotes thes x 7 Identity matrix

estimating the regression coefficientd)(by performingn L I ' .

. C L > There are (infinitely) many pairsA(2) that satisfy the
separate regressions. This is inferior than jointly edtinga optimality condition in (4). In order to obtain a unique
all coefficients when taking into account the correlatiorthia pim X : 9
observations or measurements. Rothnearal. [3] proposed solution, we need to further constrain the problem. Among

2 reqularized algorithm that simulatenously infers thaas all possible solutions of (5), we find those that minimize the
- reg -€d aigorth . y A regularized least-square eritY” — AX ||2 + X[ Q]|%, whereX
sion coefficient matrixA and the inverse error covariance

Q = »-1, by imposing sparsity constraints an. The i;- Is a regularization parameter afid||» denotes the Frobenius

._ norm. Thus, the optimization problem becomes
norm penalty o2 ensures the convergence of the regulanzeao P P

likelihood because it excludes exact solutions, for which min [|Y — AX||Z + \|Q||%

the covariance is infinitely small or equivalently the irser (4. (6)
covariance i§ infinitely Iarge._ However, in_many app!icaﬁo st (Y — AX)TQ(Y — AX) = nl.

the assumption of a sparse inverse covariance matrix may not
be reasonable or have any physical justification. In pdeigu To solve (6), we use the polar decomposition of matrices.
in the genetic regulatory ngtwork problem, there i; no ev'-efinition 2. The polar decomposition of a matri € CP*"
dence for such an assumption. Moreover, the solution to t egiven by

regularized problem in [3] relies on an iterative procedhsd B="U|B| @
finds the maximum oved then over(). That is because the ’

problem is convex in each variabld, and (2, but not convex where |B| = (BT B)'/2, (-)}/2 is the principal square root
in the pair(A, Q). This iterative procedure is not guaranteedperator andU : C» — RangéB) is a C**" isometry such
to converge and if it does converge, then it may not reach theat U7 U = 1.

optimal solution. _Hence,_ th‘? open q_uestlon remains. Huw_ca Replacing the matriXY — AX) by its polar decomposition
we perform maximum likelihood with covariance estimation

for under-determined systems?” in (5), we obtain an analytical expressionfin terms of A,

This paper addresses this question, namely the problem of Qa=nU[Y - AX)T(Y - AX)]" U7, (8)
ML estimation with unknown covariance in under-determined ) . o
systems. We present a normalization of the likelihood fionct Where U is the isometry of(Y’ — AX). The optimization
that guarantees convergence while still keeping the forthef problem in (6) becomes then equivalent to

_U(A,3) = Tr[%(Y _AX)Y —AX)'S Y + 2], )

Gaussian distribution. min Tr(S) + n? Tr(S~2)
The proofs of the mathematical claims will be presented in s 9)
the extended journal version. st. S=(V - AX)T(Y — AX)
II. THE NORMALIZED LIKELIHOOD The objective function in (9) is convex and depends only

We define the normalized-likelihood of the under®n One variableS. However, the problem is still not convex

determined ¢ < p) multiple regression model in (1), underPecause the equality in the constraint is quadratic [4]. The
the Gaussian assumption, as regression coefficient matrixd is sparse, therefore it$;

norm is upper bounded [5]. We use the sparsity dofand
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Fig. 1. Performance comparison of the proposed maximum alired-likelihood (MNL) algorithm with the regularized Méstimation for different network
sizes%95 sparse: Red: MNLE with unknown covarian&® Green: MLE forS = I; Blue: MLE for © = ¢21; Black: MLE for & = pli=il. (a) p = 10;
(b) p = 20; (c) p = 30; (d) p = 40.

approximate the problem in (9) by a convex optimizatiop > n) satisfying the under-determined regression model
problem. If |A]|; < ¢, then the solution to the optimizationY = AX + E with an unknown covariance matrix.
problem in (9) can be approximated by the solution to the Step 1 Solve the convex optimization problem in (10)
following convex optimization problem (using for instance the yalmip package in MATLAB
min Tr(S) + n? Tr(S—2) [6])- The solution is a s.p.d. matri&* € R"*"
s (10) Step 2 bG|\./endS*, tr;]e omejaI conrrllectmty matrlel*. is
obtained as the solution to the convex optimization
st SE€A={SESunl |5 -YTY| < ec) problem in (12) (using for instance, tlewx package
whereS,, ,, is the set ofn x n symmetric positive definite [7D.
matrices and is a small term which depends dhandY. Let
S* be the unique global solution of the convex optimization
problemin (10). The optimal connectivity matri®;*, satisfies,

5% = (Y — A*X)T(Y — A*X). Since there are still many HI. SIMULATION RESU'—TS_
possible solutions to the optimal connectivity matrix, we We compare the proposed MNLE algorithm to the regular-
propose to find the one with minimui norm, ized MLE algorithm in [1], where the lasso penalty is imposed

on the connectivity matrixA. To this aim, we generate

synthetic genomic networks with varying size number of
(11) measurements and correlated structu’®. We use the same

st. AX =Y —U(5§%)'/2, covariance matrix in [1] wher&; ; = pl"~/l andp = 0.9

where the equality constraint in Eq. (11) comes from tHE‘ a fixed cqrrelation §tructure. We ugse two sparse mogels of
polar decomposition ofY — AX). SinceA is sparse, we can € connectivity matrix)|Allo = 0.05p* and ||Allo = 0.2p,
approximate the solution constructed with the isometry of Wherel|||o is the number of non-zero elements. The entries of
(Y — AX), by a solution constructed by, the isometry ofy’. th_e matrix A are drawn _from a stanplard normal distribution
This approximation reduces the set over which we minimi2dth zero-mean and unit variance, i.e;; € A(0,1). The
but leads to an affine equality constraint and hence a cony{formance of the algorithmiis assessed through the filpw
problem. Thus, to findd we solve measure suggested in [8]

in || A
min | 4]

min || A — Sy o wi )L it ai —agl > 6
u [ Allx 12 E= 2261,3 with e; ; = { 0, otherwise (13)
1=1 1=3
st. AX =Y — V(5*)V/2, where a;; and a;; denote, respectively, the true and es-
MNLE algorithm: The MNLE algorithm is summarized timated connectivity entriesd is a fixed threshold set to
below. § = 4 min|a; ;| # 0. The percentage error is equal &yn>.

»J
Figure 1 shows the percentage error versus the number of
Input: The matricesX € RP*™ and Y € RP*™ measurements for p = 10,20, 30,40-gene networks and
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Fig. 2. Performance comparison of the MNLE with the regakadi ML estimation for different network siz€s80 sparse: Red: MNLE fob> unknown;
Green: MLE forS = I; Blue: MLE for & = o27; Black: MLE for & = pli=il. (a) p = 10; (b) p = 20; (c) p = 30; (d) p = 40.

|Allo = 0.05p%. The proposed MNLE algorithm (in red)that the proposed MNLE algorithm outperforms the regular-
outperforms the regularized maximum likelihood estimatazed maximum likelihood estimator with known covariance
(ML) with known covariance matrix, wherg = I, 021, pli=il  structure.
[1]. 100 Monte Carlo simulations were performed for each

curve. Observe that the percentage error of the MNLE is ACKNOWLEDGMENT
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